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Abstract. We study the algebraic structure and the representation theory of the Yokonuma–Hecke algebra
of type A, its generalisations, the affine and cyclotomic Yokonuma–Hecke algebras, and its Temperley–Lieb

type quotients, the Yokonuma–Temperley–Lieb algebra, the Framisation of the Temperley–Lieb algebra and

the Complex Reflection Temperley–Lieb algebra.

1. Introduction

A knot algebra is an algebra obtained as a quotient of the group algebra of a braid group and endowed with
a Markov trace. Using Jones’s method [Jo2, Jo3] of normalising and re-scaling the trace according to the braid
equivalence, these algebras can be used for the definition of knot invariants. Some known examples are the
Temperley–Lieb algebra (Jones polynomial), the Iwahori–Hecke algebra of type A (Homflypt polynomial),
the Iwahori–Hecke algebra of type B (Geck–Lambropoulou invariants), the Ariki–Koike algebras and the
affine Hecke algebra of type A (Lambropoulou invariants), the singular Hecke algebra (Kauffman–Vogel &
Paris–Rabenda invariants), the BMW algebra (Kauffman polynomial) and the Rook algebra (Alexander
polynomial).

Modular framisation (or simply framisation) is a mechanism proposed recently by Juyumaya and Lam-
bropoulou [JuLa5] which consists of constructing a non-trivial extension of a knot algebra via the addition
of the so-called “framing” generators, each of which is a generator of a cyclic group. In this way we obtain
a new algebra which is related to framed braids and framed knots.

The inspiring example of framisation is the Yokonuma–Hecke algebra of type A. Yokonuma–Hecke algebras
were introduced by Yokonuma [Yo] in the context of finite reductive groups as generalisations of Iwahori–
Hecke algebras. Given a finite reductive group G, the Iwahori–Hecke algebra is the endomorphism ring of the
permutation representation of G with respect to a Borel subgroup, while the Yokonuma–Hecke algebra is the
endomorphism ring of the permutation representation of G with respect to a maximal unipotent subgroup.

In recent years, the presentation of the Yokonuma–Hecke algebra of type A has been transformed in
[Ju1, JuKa, Ju2, ChPdA1, ChPo2] to the one that we will use here. This new presentation is given by
generators and relations, depending on two positive integers, d and n, and a parameter q. For q = pm and
d = pm − 1, where p is a prime number and m is a positive integer, the Yokonuma–Hecke algebra of type A,
denoted by Yd,n(q), is the endomorphism ring of the permutation representation of GLn(Fq) with respect to
a maximal unipotent subgroup. The algebra Yd,n(q) can be viewed as a framisation of the Iwahori–Hecke
algebra Hn(q) ∼= Y1,n(q), whose presentation we deform by adding the framing generators t1, . . . , tn, which
generate the finite abelian group (Z/dZ)n. Thus, Yd,n(q) can be obtained as a quotient of the group algebra
of both the framed braid group Zn o Bn and the modular framed braid group (Z/dZ)n o Bn, where Bn
denotes the classical braid group on n strands. Finally, Yd,n(q) can be also obtained as a deformation of
the group algebra of the complex reflection group G(d, 1, n) ∼= (Z/dZ)noSn, different from the Ariki–Koike
algebra [ArKo].

Juyumaya [Ju2] has defined a Markov trace on Yd,n(q), which has been subsequently used by himself
and Lambropoulou for the definition of 2-variable isotopy invariants for framed [JuLa1, JuLa2], classical
[JuLa3] and singular [JuLa4] knots and links, after Jones’s method. The invariants for classical links are
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simply the invariants for framed links restricted to links with all framings equal to 0 (that is, the links
obtained as closures of elements of Bn). Using the new presentation for Yd,n(q) established in [ChPdA1],
we have recently proved that the classical link invariants obtained from the Yokonuma–Hecke algebra are
not topologically equivalent to the Homflypt polynomial [CJKL]. This implies that framisations of knot
algebras are very useful to topologists not only for the construction of framed link invariants, but also for
the construction of new classical link invariants.

We have now introduced and studied many interesting new algebras, which are obtained as framisations
of other important knot algebras. First of all, we have the affine and cyclotomic Yokonuma–Hecke algebras
[ChPdA2], which generalise respectively the affine Hecke algebras of type A and the Ariki–Koike algebras. In
fact, we have shown in [ChSe] that affine Yokonuma–Hecke algebras appear also naturally in the study of p-
adic reductive groups, arising from a construction analogous to the one used by Yokonuma, while cyclotomic
Yokonuma–Hecke algebras give rise to both Ariki–Koike algebras and classical Yokonuma–Hecke algebras
of type A, both as quotients and as particular cases. Further, we have three possible framisations of the
Temperley–Lieb algebra, all obtained as quotients of Yd,n(q) by a suitable two-sided ideal: the Yokonuma–
Temperley–Lieb algebra [GJKL1], the Framisation of the Temperley–Lieb algebra [GJKL2] and the Complex
Reflection Temperley–Lieb algebra [GJKL2]. Our study of the structure and the representation theory of
these three algebras in [ChPo1, ChPo2] indicates that the Framisation of the Temperley–Lieb algebra is the
most natural analogue of the Temperley–Lieb algebra in this setting.

Now, all algebras mentioned above are endowed with Markov traces (see [ChPdA2] for the affine and cyclo-
tomic Yokonuma–Hecke algebras, and [GJKL1, GJKL2] for the Temperley–Lieb quotients of the Yokonuma–
Hecke algebra), which can be used for the definition of knot invariants after Jones’s method. In view of the
results of [CJKL], we have concluded that the invariants for links in the solid torus obtained from the affine
and cyclotomic Yokonuma–Hecke algebras in [ChPdA2] are not topologically equivalent to the invariants ob-
tained from the affine and cyclotomic Hecke algebras in [La1, GeLa, La2], whereas the 1-variable invariants
obtained from the Framisation of the Temperley–Lieb algebra in [GJKL2] are not topologically equivalent
to the Jones polynomial.

In view of the importance of the algebras mentioned above to both algebraists and topologists, in this
paper we will study their algebra structure and representation theory. We will provide explicit combinatorial
formulas for their irreducible representations, compute their dimensions, construct bases for them and give
semisimplicity criteria. We will also discuss their symmetric algebra structure.

2. Symmetric algebras

Let R be a commutative integral domain and let A be an R-algebra, free and finitely generated as an
R-module. If R′ is a commutative integral domain containing R, we will write R′A for R′ ⊗R A and we will
denote by Irr(R′A) the set of irreducible representations of R′A.

A symmetrising form on the algebra A is a linear map τ : A→ R such that

(a) τ(ab) = τ(ba) for all a, b ∈ A, that is, τ is a trace function, and

(b) the map τ̂ : A→ HomR(A,R), a 7→ (x 7→ τ(ax)) is an isomorphism of A-bimodules.

If there exists a symmetrising form on A, we say that A is a symmetric algebra.

Example 2.1. Let G be a finite group. The linear map τ : Z[G]→ Z defined by τ(1) = 1 and τ(g) = 0 for
all g ∈ G \ {1} is a symmetrising form on Z[G]; it is called the canonical symmetrising form on Z[G].

Suppose that there exists a symmetrising form τ on A. Let K be a field containing R such that the
algebra KA is split. The map τ can be extended to KA by extension of scalars. If V ∈ Irr(KA) and χV
denotes the corresponding irreducible character, then τ̂−1(χV ) belongs to the centre of KA [GePf, Lemma
7.1.7]. Schur’s lemma implies that τ̂−1(χV ) acts as a scalar on V ; we define this scalar to be the Schur
element associated with V and denote it by sV . We have sV ∈ RK , where RK denotes the integral closure
of R in K [GePf, Proposition 7.3.9].

Example 2.2. Let G be a finite group and let τ be the canonical symmetrising form on A := Z[G]. If K is
an algebraically closed field of characteristic 0, then KA is a split semisimple algebra and sV = |G|/χV (1)
for all V ∈ Irr(KA).
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Following [GePf, Theorem 7.2.6], we have that the algebra KA is semisimple if and only if sV 6= 0 for all
V ∈ Irr(KA). If this is the case,

τ =
∑

V ∈Irr(KA)

1

sV
χV .

From now on, we assume that R is integrally closed in K. Let θ : R → L be a ring homomorphism into
a field L such that L is the field of fractions of θ(R). We call such a ring homomorphism a specialisation of
R. Schur elements can be then used to determine whether the algebra LA is semisimple as follows [GePf,
Theorem 7.4.7]:

Theorem 2.3. Assume that KA and LA are split and that A is symmetric with symmetrising form τ . For
any simple KA-module V , let sV ∈ R be the Schur element with respect to τ . Then LA is semisimple if and
only if θ(sV ) 6= 0 for all V ∈ Irr(KA).

Finally, if LA is semisimple, we have the following famous result known as “Tits’s deformation theorem”.
For its proof, the reader may refer, for example, to [GePf, Theorem 7.4.6].

Theorem 2.4. Assume that KA and LA are split. If LA is semisimple, then KA is also semisimple and
we have a bijection Irr(KA)↔ Irr(LA).

3. Yokonuma–Hecke algebras

Let n ∈ N, d ∈ N∗. Let q be an indeterminate. The Yokonuma–Hecke algebra (of type A), denoted by
Yd,n(q), is an associative C[q, q−1]-algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:

(3.1)

(b1) gigj = gjgi for all i, j = 1, . . . , n− 1 such that |i− j| > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2,
(f1) titj = tjti for all i, j = 1, . . . , n,
(f2) tjgi = gitsi(j) for all i = 1, . . . , n− 1 and j = 1, . . . , n,
(f3) tdj = 1 for all j = 1, . . . , n,

where si is the transposition (i, i+ 1), together with the quadratic relations:

(3.2) g2i = q + (q − 1) ei gi for all i = 1, . . . , n− 1,

where

(3.3) ei :=
1

d

d−1∑
s=0

tsi t
−s
i+1.

It is easily verified that the elements ei are idempotents in Yd,n(q). Also, that the elements gi are
invertible, with

(3.4) g−1i = q−1gi + (q−1 − 1) ei for all i = 1, . . . , n− 1.

If we specialise q to 1, the defining relations (3.1)–(3.2) become the defining relations for the complex
reflection group G(d, 1, n) ∼= (Z/dZ) o Sn

∼= (Z/dZ)n o Sn. Thus, the algebra Yd,n(q) is a deformation of
the group algebra over C of G(d, 1, n). Moreover, for d = 1, the Yokonuma–Hecke algebra Y1,n(q) coincides
with the Iwahori–Hecke algebra Hn(q) of type A, and thus, for d = 1 and q specialised to 1, we obtain the
group algebra over C of the symmetric group Sn.

Remark 3.1. Note that in all the papers prior to [ChPdA1], the algebra Yd,n(q) is generated by elements
g1, . . . , gn−1, t1, . . . , tn satisfying relations (3.1) and the quadratic relations:

(3.5) g2i = 1 + (q − 1) ei + (q − 1) ei gi for all i = 1, . . . , n− 1.

This presentation changed in [ChPdA1], where we considered Yd,n(q) defined over C[q1/2, q−1/2] and gener-
ated by elements g̃1, . . . , g̃n−1, t1, . . . , tn satisfying relations (3.1) and the quadratic relations:

(3.6) g̃2i = 1 + (q1/2 − q−1/2) ei g̃i for all i = 1, . . . , n− 1.
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By taking gi := g̃i + (q1/2 − 1) eig̃i (and thus, g̃i = gi + (q−1/2 − 1) ei gi), we obtain the old presentation of
the Yokonuma–Hecke algebra. By taking gi := q1/2g̃i we obtain our presentation of the Yokonuma–Hecke
algebra.

Now let w ∈ Sn, and let w = si1si2 . . . sir be a reduced expression for w. Since the generators gi of the
Yokonuma–Hecke algebra satisfy the same braid relations as the generators of Sn, Matsumoto’s theorem
(see, for example, [GePf, Theorem 1.2.2]) implies that the element gw := gi1gi2 . . . gir is well defined, that is,
it does not depend on the choice of the reduced expression of w.

Juyumaya [Ju2] has proved that the following set is a C[q, q−1]-basis of Yd,n(q):

(3.7) BHd,n := { tr11 . . . trnn gw | w ∈ Sn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n} .

In particular, Yd,n(q) is a free C[q, q−1]-module of rank dnn!.
The representation theory of Yokonuma–Hecke algebras has been first studied by Thiem [Th1, Th2, Th3]

in the general context of unipotent Hecke algebras. The generality of his results and the new presentation
for Yd,n(q) has led us to develop in [ChPdA1] a combinatorial approach to the representation theory of the
Yokonuma–Hecke algebra of type A, in terms of d-partitions and standard d-tableaux.

3.1. Combinatorics of d-partitions and standard d-tableaux. A partition λ = (λ1, . . . , λh) is a family

of positive integers such that λ1 > λ2 > . . . > λh > 1. We write |λ| :=
∑h
i=1 λi and we say that λ is a

partition of n if n = |λ|. We denote by P(n) the set of partitions of n. We define the set of nodes [λ] of λ
to be the set

[λ] := {(x, y) | 1 6 x 6 h, 1 6 y 6 λx}.
We identify partitions with their Young diagrams: the Young diagram of λ is a left-justified array of h rows
such that the i-th row contains λi boxes (nodes) for all i = 1, . . . , h.

A d-partition of n is an ordered d-tuple λ = (λ(0), λ(1), . . . , λ(d−1)) of partitions such that |λ| :=
∑d−1
i=0 |λ(i)| =

n. We denote by P(d, n) the set of d-partitions of n. The empty multipartition, denoted by ∅, is a d-tuple of
empty partitions. A node θ of λ is a triple (x, y, i), where 0 6 i 6 d− 1 and (x, y) is a node of the partition
λ(i). We define p(θ) := i to be the position of θ and c(θ) := qy−x to be the quantum content of θ.

A d-tableau of shape λ is a bijection between the set {1, . . . , n} and the set of nodes of λ. In other words,
a d-tableau of shape λ is obtained by placing the numbers 1, . . . , n in the nodes of λ. The size of a d-tableau
of shape λ is n, that is, the size of λ. A d-tableau is standard if its entries increase along any row and down
any column of every diagram in λ. For d = 1, a standard 1-tableau is a usual standard tableau.

For a d-tableau T , we denote respectively by p(T |i) and c(T |i) the position and the quantum content of

the node with the number i in it. For example, for the standard 3-tableau T =
(

1 3 , ∅ , 2
)

of size 3, we
have

p(T |1) = 0 , p(T |2) = 2 , p(T |3) = 0 and c(T |1) = 1 , c(T |2) = 1 , c(T |3) = q .

For any d-tableau T of size n and any permutation σ ∈ Sn, we denote by T σ the d-tableau obtained from
T by applying the permutation σ on the numbers contained in the nodes of T . We have

p(T σ|i) = p
(
T |σ−1(i)

)
and c(T σ|i) = c

(
T |σ−1(i)

)
for all i = 1, . . . , n.

Note that if the d-tableau T is standard, the d-tableau T σ is not necessarily standard.

3.2. Representation theory of Yokonuma–Hecke algebras. Let λ ∈ P(d, n), and let Vλ be a C(q)-
vector space with a basis {vT } indexed by the standard d-tableaux of shape λ. We set vT := 0 for any
non-standard d-tableau T of shape λ. By [ChPdA1, Proposition 5 & Theorem 1] and [ChPo2, Theorem 3.7],
we have the following description of the irreducible representations of C(q)Yd,n(q):

Theorem 3.2. Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered arbitrarily). Let T be a
standard d-tableau of shape λ ∈ P(d, n). For brevity, we set pi := p(T |i) and ci := c(T |i) for all i = 1, . . . , n.
The vector space Vλ is a representation of C(q)Yd,n(q) with the action of the generators on the basis element
vT defined as follows: for j = 1, . . . , n,

(3.8) tj(vT ) = ξpjvT ;

for i = 1, . . . , n− 1, if pi > pi+1 then

(3.9) gi(vT ) = vT si ,
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if pi < pi+1 then

(3.10) gi(vT ) = q vT si ,

and if pi = pi+1 then

(3.11) gi(vT ) =
qci+1 − ci+1

ci+1 − ci
vT +

qci+1 − ci
ci+1 − ci

vT si ,

where si is the transposition (i, i + 1). Further, the set {Vλ |λ ∈ P(d, n)} is a complete set of pairwise
non-isomorphic irreducible representations of C(q)Yd,n(q).

The above theorem implies that the algebra C(q)Yd,n(q) is split. As we have already mentioned, when
q 7→ 1, the algebra C(q)Yd,n(q) specialises to the group algebra C[G(d, 1, n)], which is semisimple. By Tits’s
deformation theorem, we obtain that the algebra C(q)Yd,n(q) is also semisimple.

Let now θ : C[q, q−1] → C be a ring homomorphism such that θ(q) = η ∈ C \ {0}. Using the represen-
tation theory of C(q)Yd,n(q), we have proved the following semisimplicity criterion for CYd,n(η) [ChPdA1,
Proposition 9]:

Proposition 3.3. The specialised Yokonuma–Hecke algebra CYd,n(η) is (split) semisimple if and only if
θ(P (q)) 6= 0, where

P (q) =
∏

16i6n

(1 + q + · · ·+ qi−1).

Note that following Ariki’s semisimplicity criterion [Ar] for Ariki–Koike algebras (and so, in particular,
for Iwahori–Hecke algebras of type A), the algebra CYd,n(η) is semisimple if and only if the specialised
Iwahori–Hecke algebra CHn(η) is semisimple.

Another way to obtain the above result is through our definition of a canonical symmetrising form τ
on Yd,n(q) [ChPdA1, Proposition 10]. Having calculated the Schur elements of Yd,n(q) with respect to τ
[ChPdA1, Proposition 11], we can deduce the above semisimplicity criterion with the use of Theorem 2.3.
More precisely, we have the following:

Theorem 3.4. We define the linear map τ : Yd,n(q)→ C[q, q−1] by

(3.12) τ(tr11 . . . trnn gw) =

{
1 if w = 1 and rj = 0 for all j = 1, 2, . . . , n,
0 otherwise,

where w ∈ Sn and 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n. Then τ is a symmetrising form on Yd,n(q), called

the canonical symmetrising form. If λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n), then the Schur element of Vλ with
respect to τ is

(3.13) sλ = dn sλ(0)sλ(1) . . . sλ(d−1) ,

where sλ(i) is the Schur element of the Iwahori–Hecke algebra H|λ(i)|(q) corresponding to λ(i) for all i =

0, 1, . . . , d− 1 (we take s∅ := 1).

The Schur elements of Iwahori–Hecke algebras of type A have been calculated by Steinberg [St]. A simple
formula for them is given by Jacon and the author in [ChJa].

The connection between the representation theory of the Yokonuma–Hecke algebra and that of Iwahori–
Hecke algebras of type A implied by (3.13) is explained by a result of Lusztig [Lu, §34], who has proved
that Yokonuma–Hecke algebras, in general, are isomorphic to direct sums of matrix algebras over certain
subalgebras of classical Iwahori–Hecke algebras. Using the new presentation for Yd,n(q), Jacon and Poulain
d’Andecy [JaPdA] have explicitly described this isomorphism between the Yokonuma–Hecke algebra of type
A and a direct sum of matrix algebras over tensor products of Iwahori–Hecke algebras of type A. Another
proof of this result has been given recently in [EsRy], where Espinoza and Ryom-Hansen have constructed a
concrete isomorphism between Yd,n(q) and Shoji’s modified Ariki–Koike algebra. Note that in all cases the

result has been obtained over the ring C[q1/2, q−1/2] (using the generators g̃i defined in Remark 3.1). We
have managed to show that it is still valid over the smaller ring C[q, q−1]. We have [ChPo2, Theorem 4.3]:

(3.14) Yd,n(q) ∼=
⊕

µ∈Compd(n)

Matmµ(Hµ0
(q)⊗Hµ1

(q)⊗ · · · ⊗ Hµd−1
(q)),
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where

(3.15) Compd(n) = {µ = (µ0, µ1, . . . , µd−1) ∈ Nd |µ0 + µ1 + · · ·+ µd−1 = n}

and

(3.16) mµ =
n!

µ0!µ1! . . . µd−1!

4. Affine and Cyclotomic Yokonuma–Hecke algebras

In [ChPdA2], we introduced the affine and cyclotomic Yokonuma–Hecke algebras, which give rise to both
Ariki–Koike algebras and Yokonuma–Hecke algebras of type A as quotients and as special cases. Let n ∈ N,
d ∈ N∗ and l ∈ N∗ ∪ {∞}. Let q and (Qi)i∈N be indeterminates, and set Rl := C[q±1, Q±10 , Q±11 , . . . , Q±1l−1]

if l <∞, and R∞ := C[q±1]. We define the algebra Y(d, l, n) to be the associative Rl-algebra generated by
the elements

g1, . . . , gn−1, t1, . . . , tn, X1, X
−1
1

subject to the relations (3.1)–(3.2), together with the following relations concerning the generator X1:

(4.1)

X1X
−1
1 = X−11 X1 = 1

X1 g1X1g1 = g1X1g1X1

X1gi = giX1 for all i = 2, . . . , n− 1,

X1tj = tjX1 for all j = 1, . . . , n,

and if l <∞,

(4.2) (X1 −Q0)(X1 −Q1) · · · (X1 −Ql−1) = 0.

The algebra Y(d,∞, n) is called the affine Yokonuma–Hecke algebra. For l < ∞, the algebra Y(d, l, n) is
called the cyclotomic Yokonuma–Hecke algebra. These algebras are isomorphic to the modular framisations
of, respectively, the affine Hecke algebra (l = ∞) and the Ariki–Koike algebra (l < ∞); see definitions in
[JuLa5, Section 6] and [ChPdA1, Remark 1].

The cyclotomic Yokonuma–Hecke algebra is a quotient of the affine Yokonuma–Hecke algebra by the
relation (4.2). If we map X1 7→ Q0 for l <∞ or X1 7→ 1 for l =∞, we obtain a surjection of Y(d, l, n) onto
Yd,n(q). If we map tj 7→ 1 for all j = 1, . . . , n, then we obtain a surjection of Y(d, l, n) onto H(l, n), where
H(l, n) denotes the Ariki–Koike algebra associated to G(l, 1, n) for l < ∞ and H(∞, n) denotes the affine
Hecke algebra of type A. Moreover, we have Y(d, 1, n) ∼= Yd,n(q) and Y(1, l, n) ∼= H(l, n). In particular, we
have Y(1, 1, n) ∼= Hn(q).

Remark 4.1. Let p be a prime number. In a recent series of papers [Vi1, Vi2, Vi3], Vignéras introduced and
studied a large family of algebras, called pro-p-Iwahori–Hecke algebras. They generalise convolution algebras
of compactly supported functions on a p-adic connected reductive group that are bi-invariant under the
pro-p-radical of an Iwahori subgroup, which play an important role in the p-modular representation theory
of p-adic reductive groups. In [ChSe] we have shown that the affine Yokonuma–Hecke algebra Y(d,∞, n) is a
pro-p-Iwahori–Hecke algebra. Thus, the affine Yokonuma–Hecke algebra generalises the affine Hecke algebra
of type A in a similar way that the Yokonuma–Hecke algebra generalises the Iwahori–Hecke algebra of type
A. In particular, for q = pm and d = pm − 1, where m is a positive integer, Y(d,∞, n) is isomorphic to the
convolution algebra of complex valued and compactly supported functions on the group GLn(F ), with F a
suitable p-adic field, that are bi-invariant under the pro-p-radical of an Iwahori subgroup.

Remark 4.2. Following Lusztig’s approach in [Lu], Cui [Cui] has established an explicit algebra isomorphism
between the affine Yokonuma–Hecke algebra Y(d,∞, n) and a direct sum of matrix algebras over tensor
products of affine Hecke algebras of type A, similar to (3.14). More recently, Poulain d’Andecy [PdA]
obtained the same result, as well as an isomorphism between the cyclotomic Yokonuma–Hecke algebra
Y(d, l, n), where l < ∞, and a direct sum of matrix algebras over tensor products of Ariki–Koike algebras,
using the same approach as in [JaPdA]. The isomorphism theorem for cyclotomic Yokonuma–Hecke algebras
has been subsequently re-obtained by Rostam [Ro] using his result that cyclotomic Yokonuma–Hecke algebras
are cyclotomic quiver Hecke algebras.
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In [ChPdA2] we have constructed several bases for the algebra Y(d, l, n). In order to describe them here,
we introduce the following notation: Let Zl := {0, . . . , l− 1} for l <∞ and Z∞ := Z. We define inductively
elements X2, . . . , Xn of Y(d, l, n) by setting

Xi+1 := q−1giXigi for all i = 1, . . . , n− 1.

Let Bd,n be a basis of the Yokonuma–Hecke algebra Yd,n(q) ∼= Y(d, 1, n) over Rl (we can take, for example,
BHd,n defined in (3.7)). We denote by BAK

d,l,n the following set of elements of Y(d, l, n):

Xa1
1 . . . Xan

n · ω , ak ∈ Zl and ω ∈ Bd,n.

Now, for k = 1, . . . , n, we set

W
(k)
J,a,b := g−1J . . . g−12 g−11 Xa

1 t
b
1 g1g2 . . . gk−1 ,

W
(k)−
J,a,b := gJ . . . g2g1X

a
1 t

b
1 g
−1
1 g−12 . . . g−1k−1 ,

W̃
(k)
J,a,b := gJ . . . g2g1X

a
1 t

b
1 g1g2 . . . gk−1 ,

W̃
(k)−
J,a,b := g−1J . . . g−12 g−11 Xa

1 t
b
1 g
−1
1 g−12 . . . g−1k−1 ,

where J ∈ {0, . . . , k−1} and a, b ∈ Z. We use the following standard conventions: for ε = ±1, gεJ . . . g
ε
2g
ε
1 := 1

and gεk−J . . . g
ε
k−2g

ε
k−1 := 1 if J = 0. Then we denote, respectively, by BIndd,l,n, BInd−d,l,n , B̃Indd,l,n and B̃Ind−d,l,n the

following sets of elements of Y(d, l, n):

W
(n)
Jn,an,bn

. . .W
(2)
J2,a2,b2

W
(1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.

W
(n)−
Jn,an,bn

. . .W
(2)−
J2,a2,b2

W
(1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.

W̃
(n)
Jn,an,bn

. . . W̃
(2)
J2,a2,b2

W̃
(1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.

W̃
(n)−
Jn,an,bn

. . . W̃
(2)−
J2,a2,b2

W̃
(1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.
We then have the following [ChPdA2, Theorem 4.4]:

Theorem 4.3. Each set BAK
d,l,n, BIndd,l,n, BInd−d,l,n , B̃Indd,l,n and B̃Ind−d,l,n is an Rl-basis of Y(d, l, n). In particular,

Y(d, l, n) is a free Rl-module and, if l <∞, its rank is equal to (dl)nn!.

Remark 4.4. The set BAK
d,l,n is the analogue of the Ariki–Koike basis of the Ariki–Koike algebra H(l, n) for

l < ∞, and the standard Bernstein basis of the affine Hecke algebra of type A for l = ∞. The four other
sets are inductive sets with respect to n, which are analogous to the inductive bases of H(l, n) studied in
[La2, OgPo].

Furthermore, in [ChPdA2] we have studied the representation theory of the cyclotomic Yokonuma–Hecke
algebra Y(d, l, n), which is quite similar to the representation theory of the Yokonuma–Hecke algebra Yd,n(q).
From now on, we only consider the case l <∞.

Let Kl denote the field of fractions of Rl. We will see that the irreducible representations of the al-
gebra KlY(d, l, n) are parametrised by the dl-partitions of n. Instead of looking though at dl-partitions
as dl-tuples of partitions, we look at them as d-tuples of l-partitions, and we call them (d, l)-partitions
when seen as such. We denote by P(d, l, n) the set of (d, l)-partitions of n. If λ ∈ P(d, l, n), then

λ = (λ(0),λ(1), . . . ,λ(d−1)), where λ(i) is an l-partition for all i = 0, 1, . . . , d − 1, and
∑d−1
i=0 |λ

(i)| = n.

We thus have λ(i) = (λ(i,0), λ(i,1), . . . , λ(i,l−1)), where λ(i,j) is a partition for all i = 0, 1, . . . , d − 1 and

j = 0, 1, . . . , l − 1, and
∑d−1
i=0

∑l−1
j=0 |λ(i,j)| = n.

A node θ of λ is a 4-tuple (x, y, i, j), where 0 6 i 6 d−1, 0 6 j 6 l−1 and (x, y) is a node of the partition
λ(i,j). We define p(θ) := i to be the d-position of θ and c(θ) := Qjq

y−x to be the l-quantum content of θ.
Following the definitions in §3.1, a (d, l)-tableau is simply a dl-tableau and a standard (d, l)-tableau is

simply a standard dl-tableau. For a (d, l)-tableau T and for i = 1, . . . , n, we denote respectively by p(T |i)
and c(T |i) the d-position and the l-quantum content of the node with the number i in it.

Now, let λ ∈ P(d, l, n), and let Vλ be a C(q)-vector space with a basis {vT } indexed by the standard
(d, l)-tableaux of shape λ. We set vT := 0 for any non-standard (d, l)-tableau T of shape λ. By [ChPdA2,
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Propositions 3.2 & 3.4], the vector space Vλ is a representation of KlY(d, l, n), with the action of the
generators g1, . . . , gn−1, t1, . . . , tn on the basis element vT defined exactly as in Theorem 3.2, and the action
of the generator X1 given by:

(4.3) X1(vT ) = c(T |1) vT .

Further, the set {Vλ |λ ∈ P(d, l, n)} is a complete set of pairwise non-isomorphic irreducible representations
of KlY(d, l, n).

Remark 4.5. We can easily show, by induction on i, that [ChPdA2, Lemma 3.3]:

(4.4) Xi(vT ) = c(T |i) vT for all i = 1, . . . , n.

We also have a semisimplicity criterion for cyclotomic Yokonuma–Hecke algebras, which is exactly the
same as Ariki’s semisimplicity criterion [Ar] for Ariki–Koike algebras [ChPdA2, Proposition 4.7]:

Proposition 4.6. Let θ : Rl → C be a ring homomorphism such that θ(q)
∏l−1
j=0 θ(Qj) 6= 0. The specialised

cyclotomic Yokonuma–Hecke algebra CY(d, l, n)θ, defined via θ, is (split) semisimple if and only if θ(P ) 6= 0,
where

P =
∏

16i6n

(1 + q + · · ·+ qi−1)
∏

06s<t6l−1

∏
−n<k<n

(qkQs −Qt).

We deduce that the algebra CY(d, l, n)θ is semisimple if and only if the specialised Ariki–Koike algebra
CH(l, n)θ is semisimple.

Finally, we have proved the existence of a “canonical” symmetrising form on KlY(d, l, n) and calculated
the Schur elements with respect to it [ChPdA2, §7]:

Theorem 4.7. We define the linear map τ : Y(d, l, n)→ Rl by

(4.5) τ(Xa1
1 . . . Xan

n tb11 . . . tbnn gw) =

{
1 if w = 1 and aj = bj = 0 for all j = 1, 2, . . . , n,
0 otherwise,

where w ∈ Sn, aj ∈ Zl and 0 6 bj 6 d − 1 for all j = 1, 2, . . . , n. Then τ (extended linearly) is a

symmetrising form on KlY(d, l, n). If λ = (λ(0), . . . ,λ(d−1)) ∈ P(d, l, n), then the Schur element of Vλ with
respect to τ is

(4.6) sλ = dn sλ(0)sλ(1) . . . sλ(d−1) ,

where sλ(i) is the Schur element of the Ariki–Koike algebra H(l, |λ(i)|) corresponding to λ(i) for all i =
0, 1, . . . , d− 1 (we take s∅ := 1).

The Schur elements of Ariki–Koike algebras have been calculated independently by Geck–Iancu–Malle
[GIM] and Mathas [Mat]. A simple formula for them is given by Jacon and the author in [ChJa].

Remark 4.8. The map τ is known to be a symmetrising form on Y(d, l, n) (defined over Rl) in cases d = 1
[MalMat] and l = 1 [ChPdA1]. In these cases, τ is called the canonical symmetrising form on Y(d, l, n).

Remark 4.9. Equation (4.6) hints towards an isomorphism between the cyclotomic Yokonuma–Hecke al-
gebra Y(d, l, n) and a direct sum of matrix algebras over tensor products of Ariki–Koike algebras; this
isomorphism was recently described by Poulain d’Andecy in [PdA] and by Rostam in [Ro].

5. Temperley–Lieb quotients of Yokonuma–Hecke algebras

The Temperley–Lieb algebra was introduced by Temperley and Lieb in [TeLi] for its applications in
statistical mechanics. Jones [Jo1, Jo2, Jo3] later showed that it can be obtained as a quotient of the
Iwahori–Hecke algebra Hn(q) of type A by a two-sided ideal, and used it for the construction of the knot
invariant known as the Jones polynomial.

As explained in the introduction, we have three possible analogues of the Temperley–Lieb algebra in the
Yokonuma–Hecke algebra setting: the Yokonuma–Temperley–Lieb algebra [GJKL1], the Framisation of the
Temperley–Lieb algebra [GJKL2] and the Complex Reflection Temperley–Lieb algebra [GJKL2]. All three
are defined as quotients of the Yokonuma–Hecke algebra Yd,n(q) of type A by a suitable two-sided ideal, and
they specialise to the classical Temperley–Lieb algebra for d = 1.
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In this section, we will determine the irreducible representations of the three algebras by showing which
representations of Yd,n(q) pass to each quotient. We will compute their dimensions and construct bases for
them. At the end of this section, it will be clear that the most natural analogue of the Temperley–Lieb
algebra in this setting is the Framisation of the Temperley–Lieb algebra.

First, let us recall some information about the classical setting. Let n > 3. The Temperley–Lieb algebra
TLn(q) is defined as the quotient of the Iwahori–Hecke algebra Hn(q) ∼= Y1,n(q) by the ideal In generated
by the elements

gi,i+1 := 1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi =
∑

w∈〈si,si+1〉

gw

for all i = 1, . . . , n− 2. It turns out that this ideal is principal, and we have In = 〈 g1,2 〉.
Since the algebra C(q)Hn(q) is semisimple, the algebra C(q)TLn(q) is also semisimple and its irreducible

representations are precisely the irreducible representations of C(q)Hn(q) that pass to the quotient. That
is, for λ ∈ P(n), Vλ is an irreducible representation of C(q)TLn(q) if and only if g1,2(vT ) = 0 for every
standard tableau T of shape λ. It is easy to see that the latter is equivalent to the trivial representation
not being a direct summand of the restriction ResSn〈s1,s2〉(E

λ), where Eλ is the irreducible representation of

the symmetric group Sn labelled by λ. Since the restriction from Sn to S3
∼= 〈s1, s2〉 corresponds to the

simple removal of boxes from the Young diagram of λ, and the trivial representation of S3 is labelled by the
partition (3), we obtain the following description of the irreducible representations of C(q)TLn(q):

Theorem 5.1. Let λ ∈ P(n). We have that Vλ is an irreducible representation of C(q)TLn(q) if and only
if the Young diagram of λ has at most two columns.

Now, let n ∈ N, and let i = (i1, . . . , ip) and k = (k1, . . . kp) be two p-tuples of non-negative integers, with
0 6 p 6 n− 1. We denote by Hn the set of pairs (i, k) such that

1 6 i1 < i2 < · · · < ip 6 n− 1 and ij − kj > 1 ∀ j = 1, . . . , p.

For (i, k) ∈ Hn, we set

gi,k := (gi1gi1−1 . . . gi1−k1)(gi2gi2−1 . . . gi2−k2) . . . (gipgip−1 . . . gip−kp) ∈ Hn(q).

We take g∅,∅ to be equal to 1. We have that the set

BH1,n = {gw |w ∈ Sn} = {gi,k | (i, k) ∈ Hn}

is the standard basis of Hn(q) as a C[q, q−1]-module.
Further, let us denote by Tn the subset of Hn consisting of the pairs (i, k) such that

1 6 i1 < i2 < · · · < ip 6 n− 1 and 1 6 i1 − k1 < i2 − k2 < · · · < ip − kp 6 n− 1.

Jones [Jo1] has shown that the set

BTL
1,n := {gi,k | (i, k) ∈ Tn}

is a basis of TLn(q) as a C[q, q−1]-module. We have |BTL
n | = Cn, where Cn is the n-th Catalan number, i.e.,

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

n∑
k=0

(
n

k

)2

.

5.1. The Yokonuma–Temperley–Lieb algebra. Let d ∈ N∗ and let n ∈ N with n > 3. The Yokonuma–
Temperley–Lieb algebra YTLd,n(q) is defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q) by the
ideal Id,n := 〈 g1,2 〉.

Since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)YTLd,n(q) is also semisimple and its irre-
ducible representations are precisely the irreducible representations of C(q)Yd,n(q) that pass to the quotient.
That is, for λ ∈ P(d, n), Vλ is an irreducible representation of C(q)YTLd,n(q) if and only if g1,2(vT ) = 0
for every standard d-tableau T of shape λ. It is easy to see that the latter is equivalent to the trivial

representation not being a direct summand of the restriction Res
G(d,1,n)
〈s1,s2〉 (Eλ), where Eλ is the irreducible

representation of the complex reflection group G(d, 1, n) labelled by λ. Unfortunately, this restriction for
d > 1 does not correspond to the simple removal of boxes from the Young diagram of λ (as in the symmetric
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group case), but it is controlled by the so-called Littlewood–Richardson coefficients. Using algebraic com-
binatorics, we obtain the following description of the irreducible representations of C(q)YTLd,n(q) [ChPo1,
Theorem 3]:

Theorem 5.2. Let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We have that Vλ is an irreducible representation of

C(q)YTLd,n(q) if and only if the Young diagram of λ has at most two columns in total, that is,
∑d−1
i=0 λ

(i)
1 6 2.

Using the fact that the algebra C(q)YTLd,n(q) is semisimple and the above description of its irreducible
representations, we have been able to calculate the dimension of the Yokonuma–Temperley–Lieb algebra
[ChPo1, Proposition 4]. We have

dimC(q)(C(q)YTLd,n(q)) =
n(d2 − d) + d2 + d

2
Cn − (d2 − d).

What is more, we have shown in [ChPo1] that YTLd,n(q) is a free C[q, q−1]-module of rank equal to the
dimension above. However, note that, even though the set

BHd,n =
{
tr11 . . . trnn gi,k | (i, k) ∈ Hn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n}

is a basis of Yd,n(q) as a C[q, q−1]-module, the set

BTL
d,n =

{
tr11 . . . trnn gi,k | (i, k) ∈ Tn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n}

is not a basis of YTLd,n(q) as a C[q, q−1]-module, since |BTL
d,n| = dnCn. The set BTL

d,n is simply a generating

set for YTLd,n(q), and we have managed to find a subset BYTL
d,n of BTL

d,n that is a basis of YTLd,n(q) by proving

the following remarkable property: Let (i, k) ∈ Tn. We denote by I(gi,k) the set (without repetition) of all
indices of the gj ’s appearing in gi,k, i.e.,

I(gi,k) = {i1, i1 − 1, . . . , i1 − k1, i2, i2 − 1, . . . , i2 − k2, . . . , ip, ip − 1, . . . , ip − kp}.

We define the weight of gi,k to be wi,k := |I(gi,k)|. We then have [ChPo1, Propositions 9, 11, 12]:

|{(r1, . . . , rn) ∈ {0, . . . , d− 1}n | tr11 . . . trnn gi,k ∈ BYTL
d,n }| = 2n−wi,k−1(d2 − d) + d− δwi,k,0(d2 − d),

where δi,j stands for Kronecker’s delta (note that we have wi,k = 0 if and only if gi,k = 1). Thanks to this
property, an explicit basis for YTLd,n(q) as a C[q, q−1]-module is described in [ChPo1].

5.2. The Framisation of the Temperley–Lieb algebra. Let d ∈ N∗ and let n ∈ N with n > 3. The
Framisation of the Temperley–Lieb algebra FTLd,n(q) is defined as the quotient of the Yokonuma–Hecke
algebra Yd,n(q) by the ideal Jd,n := 〈 e1e2g1,2 〉. We remark that Jd,n can be also defined as the ideal

generated by the element
∑

06a,b6d−1 t
a
1t
b
2t
−a−b
3 g1,2.

Again, since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)FTLd,n(q) is also semisimple and
its irreducible representations are precisely the irreducible representations of C(q)Yd,n(q) that pass to the
quotient. That is, for λ ∈ P(d, n), Vλ is an irreducible representation of C(q)FTLd,n(q) if and only if
e1e2g1,2(vT ) = 0 for every standard d-tableau T of shape λ. Using the formulas for the irreducible rep-
resentations of C(q)Yd,n(q) given by Theorem 3.2, we obtain the following description of the irreducible
representations of C(q)FTLd,n(q) [ChPo2, Theorem 3.10]:

Theorem 5.3. Let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We have that Vλ is an irreducible representation of
C(q)FTLd,n(q) if and only if the Young diagram of λ(i) has at most two columns for all i = 0, . . . , d− 1.

Following the recipe of [JaPdA, §3], we have proved the following isomorphism theorem for FTLd,n(q)
[ChPo2, Theorem 4.3]:

Theorem 5.4. There exists a C[q, q−1] algebra isomorphism

ψn : FTLd,n(q)→
⊕

µ∈Compd(n)

Matmµ(TLµ0
(q)⊗ TLµ1

(q)⊗ · · · ⊗ TLµd−1
(q)),

where Compd(n) and mµ are as defined in (3.15) and (3.16), and we take TLn(q) ∼= Hn(q) for n < 3.
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We deduce that the following set is a basis of FTLd,n(q) as a C[q, q−1]-module [ChPo2, Proposition 4.4]:{
ψ−1n (bµ0 b

µ
1 . . . b

µ
d−1M

µ
k,l) |µ ∈ Compd(n), bµi ∈ B

TL
1,µi for all i = 0, . . . , d− 1, 1 6 k, l 6 mµ

}
,

where Mµ
k,l denotes the elementary mµ ×mµ matrix with 1 in position (k, l). In particular, FTLd,n(q) is a

free C[q, q−1]-module of rank ∑
µ∈Compd(n)

m2
µ Cµ0

Cµ1
· · ·Cµd−1

.

5.3. The Complex Reflection Temperley–Lieb algebra. Let d ∈ N∗ and let n ∈ N with n > 3. The
Complex Reflection Temperley–Lieb algebra CTLd,n(q) is defined as the quotient of the Yokonuma–Hecke

algebra Yd,n(q) by the ideal Kd,n := 〈
∑d−1
s=0 t

s
1e1e2g1,2 〉. We remark that Kd,n can be also viewed as the

ideal generated by the element
∑

06a,b,c6d−1 t
a
1t
b
2t
c
3 g1,2.

Once more, the algebra C(q)CTLd,n(q) is semisimple and, for λ ∈ P(d, n), Vλ is an irreducible represen-

tation of C(q)CTLd,n(q) if and only if
∑d−1
s=0 t

s
1e1e2g1,2(vT ) = 0 for every standard d-tableau T of shape λ.

Using the formulas for the irreducible representations of C(q)Yd,n(q) given by Theorem 3.2, we obtain the
following description of the irreducible representations of C(q)CTLd,n(q) [ChPo2, Theorem 5.3]:

Theorem 5.5. Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered arbitrarily) as in Theorem
3.2. Let i0 ∈ {0, . . . , d− 1} be such that ξi0 = 1, and let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We have that Vλ
is an irreducible representation of C(q)CTLd,n(q) if and only if the Young diagram of λ(i0) has at most two
columns.

Following the recipe of [JaPdA, §3], we have proved the following isomorphism theorem for CTLd,n(q)
[ChPo2, Theorem 5.8]:

Theorem 5.6. There exists a C[q, q−1] algebra isomorphism

ψn : CTLd,n(q)→
⊕

µ∈Compd(n)

Matmµ(TLµ0
(q)⊗Hµ1

(q)⊗Hµ2
(q)⊗ · · · ⊗ Hµd−1

(q)),

where Compd(n) and mµ are as defined in (3.15) and (3.16), and we take TLn(q) ∼= Hn(q) for n < 3.

We deduce that the following set is a basis of CTLd,n(q) as a C[q, q−1]-module [ChPo2, Proposition 5.9]:{
ψ
−1
n (bµ0 b

µ
1 . . . b

µ
d−1M

µ
k,l) |µ ∈ Compd(n), bµ0 ∈ BTL

1,µ0
, bµi ∈ B

H
1,µi for all i = 1, . . . , d− 1, 1 6 k, l 6 mµ

}
,

where Mµ
k,l denotes the elementary mµ ×mµ matrix with 1 in position (k, l). In particular, CTLd,n(q) is a

free C[q, q−1]-module of rank ∑
µ∈Compd(n)

m2
µ Cµ0

µ1! . . . µd−1!.
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Laboratoire de Mathématiques UVSQ, Bâtiment Fermat, 45 avenue des États-Unis, 78035 Versailles cedex,

France.
E-mail address: maria.chlouveraki@uvsq.fr

12


	1. Introduction
	2. Symmetric algebras
	3. Yokonuma–Hecke algebras
	4. Affine and Cyclotomic Yokonuma–Hecke algebras
	5. Temperley–Lieb quotients of Yokonuma–Hecke algebras
	References

